A Matrix q-Analogue of the Parikh Map
نویسندگان
چکیده
We introduce an extension of the Parikh mapping called the Parikh -matrix mapping, which takes its values in matrices with polynomial entries. The morphism constructed represents a word over a -letter alphabet as a -dimensional upper-triangular matrix with entries that are nonnegative integral polynomials in variable . We show that by appropriately embedding the -letter alphabet into the -letter alphabet and putting , we obtain the extension of the Parikh mapping to -dimensional (numerical) matrices introduced by Mateescu, Salomaa, Salomaa, and Yu. The Parikh -matrix mapping however, produces matrices that carry more information about than the numerical Parikh matrix. The entries of the -matrix image of under this morphism is constructed by -counting the number of occurrences of certain words as scattered subwords of .
منابع مشابه
A q-Matrix Encoding Extending the Parikh Matrix Mapping
We introduce a generalization of the Parikh mapping called the Parikh q-matrix encoding, which takes its values in matrices with polynomial entries. The encoding represents a word w over a k-letter alphabet as a (k + 1)-dimensional upper-triangular matrix with entries that are nonnegative integral polynomials in variable q. Putting q = 1, we obtain the morphism introduced by Mateescu, Salomaa, ...
متن کاملExtending Parikh q-matrices
1. A. Atanasiu. Binary amiable words. International Journal of Foundations of Computer Science, 18(2):387–400, 2007. 2. A. Atanasiu, R. Atanasiu, and I. Petre. Parikh matrices and amiable words. Theoretical Computer Science, 390:102–109, 2008. 3. A. Atanasiu, C. Martin-Vide, and A. Mateescu. On the injectivity of the parikh matrix mapping. Fundamenta Informatica, 46:1–11, 2001. 4. S. Bera and K...
متن کاملIterative algorithm for the generalized $(P,Q)$-reflexive solution of a quaternion matrix equation with $j$-conjugate of the unknowns
In the present paper, we propose an iterative algorithm for solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} {underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$. By this iterative algorithm, the solvability of the problem can be determined automatically. When the matrix equation is consistent over...
متن کاملSome results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs
Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...
متن کاملComputation of the q-th roots of circulant matrices
In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004